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Abstract The aim of the present work is to find the secular
solution around the triangular equilibrium points and reduce
it to the periodic solution in the frame work of the gener-
alized restricted thee-body problem. This model is gener-
alized in sense that both the primaries are oblate and ra-
diating as well as the gravitational potential from a belt.
We show that the linearized equation of motion of the in-
finitesimal body around the triangular equilibrium points
has a secular solution when the value of mass ratio equals
the critical mass value. Moreover, we reduce this solution
to periodic solution, as well as some numerical and graph-
ical investigations for the effects of the perturbed forces
are introduced. This model can be used to examine the ex-
istence of a dust particle near the triangular points of an
oblate and radiating binary stars system surrounded by a
belt.
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1 Introduction

The problem of three bodies in its most general form means
that the three participating bodies are free to move in space
and initially move in any given manner under the influence
of a given force field. The significance of this problem in
space dynamics will appear when the bodies move under the
influence of their mutual gravitational attraction according
to the Newtonian Law of gravitation. This law specifies that
attractive forces between each pair of masses are inversely
proportional to the squares of their distances and are propor-
tional to the product masses of the respective particles.

A first consequence of this Law comes when two of the
bodies approach each other such that the separation distance
between them goes to zero and the force between them also
comes to infinity. This circumstance is called double or triple
collision according to whether two or three of the participat-
ing particles go to the same position in space at the same
time. A second consequence of the force law, it follows that
when one of the three participating particles is very smaller
than the other two. In this situation the motion of the two
larger particles will not be influenced by the smaller parti-
cle. This dynamical system is referred to as the restricted
three-body problem. Therefore, if the motion of the smallest
particle is found, we can determine the motion of the other
two particles by setting the mass of the smaller particle as
zero.

From the above discussion the restricted problem is an
abstraction in the physical sense and an approximation in the
mathematical sense. Since there is no effect for the smaller
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mass on the two larger particles unless its mass equals ei-
ther zero or moves to infinity. Both of these cases reduce the
restricted three-body problem to the problem of two bodies.

It is well known that there are five Lagrange solutions in
the rotating coordinates system show up as five fixed points
at which the infinitesimal body would be stationary if placed
there with zero velocity. It is further known that in this rotat-
ing coordinates system the infinitesimal body may describe
periodic orbits around Lagrange solutions which are referred
to as Libration points.

Among the most fundamental questions about motion
near libration points are those about the existence of periodic
orbits and their stability. Periodic orbits obtain their signifi-
cance to space mechanics when stable periodic orbits do ex-
ist. They may be used as reference orbits. Furthermore, the
determination of non-periodic orbits can be performed by
perturbation analysis based on periodic orbits. In this sec-
tion we will survey some results thus for obtained in the
investigations of stability and periodicity.

The studies of many authors concerned to the existence
of libration points, their stability and the periodic orbits in
the framework of the restricted problem under the influence
of the lack of spherecity, the photogravitational force, small
perturbations in fictitious forces. Some of these works are in-
troduced by Sharma (1987), Elipe and Lara (1997), Ishwar
and Elipe (2001), Perdios (2001), Tsirrogiannis et al. (2006),
Mittal et al. (2009), Singh and Begha (2011), Abouelmagd
et al. (2013), Abouelmagd and El-Shaboury (2012) and
Abouelmagd (2012, 2013a, 2013b).

Some researchers devoted their studied for exploring the
families of asymmetric periodic orbits. Papadakis (2008)
studied the asymmetric solutions of the restricted planar
problem of three bodies. He explored numerically the fami-
lies of asymmetric simple-periodic orbits. He also presented
the evolution of these families covering the entire range of
the mass parameter of the problem. Furthermore, he regular-
ized the equations of motion of the problem using the Levi-
Civita transformations to avoid the singularity due to binary
collisions between the third body and one of the primaries.
Symmetric relative periodic orbits in the isosceles three-
body problem using theoretical and numerical approaches
are studied by Shibayama and Yagasaki (2011). They proved
that another family of symmetric relative periodic orbits is
born from the circular Euler solution besides the elliptic Eu-
ler solutions. Their studies also showed that there exist in-
finitely many families of symmetric relative periodic orbits
which are born from heteroclinic connections between triple
collisions as well as planar periodic orbits with binary colli-
sions.

Hou and Liu (2011) investigated that the collinear libra-
tion points of the real Earth–Moon system are not equi-
librium points anymore due to various perturbations. They

found special quasi-periodic orbits called dynamical substi-
tutes under the assumption that the Moon’s motion is quasi-
periodic. In addition they computed the dynamical substi-
tutes of the three collinear libration points in the real Earth–
Moon system. In addition, Beevi and Sharma (2012) ex-
plored the effect of oblateness of Saturn on the periodic or-
bits and the regions of quasi-periodic motion around both
the primaries in the Saturn-Titan system in the framework
of planar circular restricted three-body problem. They stud-
ied the effect of oblateness on the location, nature and size of
periodic and quasi-periodic orbits, using the numerical tech-
nique of Poincare surface of sections. They also showed that
some of the periodic orbits change to quasi-periodic orbits
due to the effect of oblateness and vice-versa.

Furthermore Abouelmagd and Sharaf (2013) studied and
found these orbits around the libration points when the more
massive primary is radiating and the smaller is an oblate
spheroid. Their study included the effects of zonal harmonic
parameters up to 10−6 of the main term.

The model of restricted three-body problem when the two
primaries are oblate spheroids and radiating as well as the
effect of gravitational potential from the belt are constructed
by Singh and Taura (2013). They constructed the equations
of motion, found the positions of the equilibrium points and
examined their linear stability. They also established that, in
addition to the usual five equilibrium points, there are two
new collinear points Ln1, Ln2 due to the potential from the
belt. They investigated that the collinear equilibrium points
remain unstable, while the triangular points are stable for
µ ∈ (0,µc) and unstable for µ ∈ [µc,1/2], where µc is
the critical mass influenced by the perturbed forces that are
aforementioned.

In this work, we will follow Singh and Taura (2013) to
find the secular solution around the triangular points in the
restricted three-body problem and reduce this solution to pe-
riodic solution.

2 Model description

2.1 Hypothesis

We assume that m1 and m2 denote the masses of the more
massive and the smaller primaries respectively and the mass
of the infinitesimal body is m. Let us consider the same as-
sumptions of Singh and Taura (2013). Both masses m1 and
m2 have circular orbits around their common center of mass.
Furthermore m moves in orbital plane under their mutual
gravitational fields. The sum of m1 and m2 is one where
µ = m2/(m1 + m2) is the mass ratio and the distance be-
tween them also is taken as one. In addition the unit of time
is chosen to make both the constant of gravitation and the
unperturbed mean motion equals unity. Let the origin of the



Astrophys Space Sci (2014) 350:495–505 497

Fig. 1 The configuration of
inertial XY and synodic xy
coordinate frames of the
restricted three-body problem
when the primaries are
surrounded by the belt of
asteroids

sidereal and the synodic coordinates be the common center
of mass of the primaries and the synodic coordinates rotate
with angular velocity n in positive direction. Hence we can
write m1 = 1 −µ and m2 = µ ≤ 1/2, the coordinates of m1,
m2 and m in a synodic frame are (−µ,0,0), (1 − µ,0,0)

and (x, y, z) respectively, see Fig. 1.
Now let the radiation parameter be qi = 1 − pi and

the oblateness coefficient is also Ai (i = 1,2) for the big-
ger and smaller primaries respectively, where 0 < pi ≪ 1,
pi = Fpi/Fgi and 0 < Ai ≪ 1. Moreover, the potential due
to the belt is Mb/(r

2 + T 2)1/2 see Miyamoto and Nagai
(1975) where Mb is the total mass of the belt, r is the radial
distance of the infinitesimal body such that r2 = x2 + y2,
T = a + b, a and b are constants that characterize the den-
sity profile of the belt. Such that a determine the flatness of
the profile and is called the flatness parameter. While b gives
the size of the core of the density profile and is known as the
core parameter. In the case a = b = 0, we obtain the poten-
tial of a point mass or spherical subject whose mass is Mb .
Furthermore, the directions of forces (Fm1

, Fmb
and Fm1

)
experienced by the mass m can be shown as in Fig. 1.

2.2 The equation of motion

We suppose that m1 and m2 move in xy plane. The equa-
tions of motion of infinitesimal body given below as in Singh
and Taura (2013)

ẍ − 2nẏ = Ωx (1a)

ÿ + 2nẋ = Ωy (1b)

where

Ω =
{

1
2
n2[x2 + y2] + (1 − µ)q1

[
1
r1

+ A1

2r3
1

]

+ µq2

[
1
r2

+ A2

2r3
2

]
+ Mb

(r2 + T 2)1/2

}
(2)

where n the perturbed mean motion while r1 and r2 are dis-
tances of m with respect to m1 and m2 respectively, that are
given by

r2
1 = (x + µ)2 + y2 (3a)

r2
2 = (x + µ − 1)2 + y2 (3b)

n2 = 1 + 3
2
(A1 + A2) + 2Mbrc

(r2
c + T 2)3/2 (4)

If we multiply (1a), (1b) by ẋ and ẏ respectively and
add them, we will get a perfect differential for Ω where
Ω ≡ Ω(x, y) is a function of x, y, hence after integrating
we obtain Jacobi integral as

ẋ2 + ẏ2 − 2Ω + c = 0 (5)

where c is integration constant.

3 Characteristic equation and its roots

We assume that the infinitesimal body is displaced a lit-
tle from one of the triangular points (x0, y0) to the point
(x0 + ξ, y0 + η) where ξ and η are the variation. Hence the
equations of motion and the characteristic equation corre-
sponding to Eqs. (1a) and (1b) will be controlled by

ξ̈ − 2nη̇ = Ω0
xxξ + Ω0

xyη (6a)

η̈ + 2nξ̇ = Ω0
xyξ + Ω0

yyη (6b)


